
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimizing Road Capacity and Type 
 

Kenneth A. Small 
Department of Economics 

University of California, Irvine 
 

Chen Feng Ng 
Department of Economics 

California State University, Long Beach 
 

June 2013 
 

 
 
 



i 
 

  Optimizing Road Capacity and Type 
 

In the economic analysis of road investment, road capacity (the maximum traffic flow obtainable on a 
given roadway – expressed in vehicles per hour) is generally taken to be the primary point of 
consideration.  Yet, if a key objective in road design is to minimize travel‐time costs, there are other 
design variables which should be considered.  In this study, Small and Ng present an expanded 
investment model which includes free‐flow speed (the average speed of vehicles when congestion is 
negligible) as an additional design variable.  This updated model permits the authors to address 
questions like the following: Given that many high‐speed urban expressways operate under severe 
congestion for several hours each day, is the extra expense of providing such high‐speed service 
justified? More specifically, the new model allows the authors to re‐analyze existing road designs and 
discover design changes which, if adopted at initial construction, could have led to reduced travel‐times 
costs without increasing capital costs.   
 
In the analysis, the authors find some evidence that typical freeways in large urban areas are over‐
designed for free‐flow speed at the expense of capacity.  While the optimal road configuration is very 
case‐specific, their analysis leads to a more general policy conclusion: road design needs to allow for 
variety and flexibility, rather than being constrained to meet a predetermined set of standards. 
 
Analysis 
 
Small and Ng begin the analysis by modifying existing long‐run cost functions, which have historically 
only accounted for capacity, to also account for free‐flow speed.  Two cost functions ensue: a function 
for capital costs which accounts for the initial costs of construction and land, and a function for user 
costs which accounts for road users’ travel time costs.   
 
The authors proceed to apply the model to some examples of roads to see under what conditions these 
roads embody the optimal balance between free‐flow speed and capacity.  A road is optimally balanced 
if the mix of these two design variables minimizes total travel‐time costs for a given capital cost.  They 
first consider a wide selection of roads and traffic levels in order to explore the range of conditions when 
each type of road is appropriate.  They then look at representative roads in various cities to see if they 
would be better served with a different type of design.  Finally, they examine absolute criteria (i.e., 
benefit‐cost ratios) for investing in capacity or free‐flow speed for the same sample of cities. 
 
Results  
 
Applying the model to common road types – are they optimally designed? 
 
When Small and Ng apply the model to 24 common road types, they find that when peak congestion 
levels are mild, investing in more free‐flow speed produces greater travel‐time cost reductions per unit 
of capital cost than does investing in more capacity, for all types of roads except two‐lane urban streets.  
Under highly‐congested conditions, by contrast, investment in free‐flow speed is never favored; rather, 
it is always better at the design stage to sacrifice some free‐flow speed in order to increase capacity.  
With an intermediate level of congestion, the balance differs for different types of roads; all the 
highways and expressways of four lanes or more offer inefficiently high free‐flow speeds relative to their 
capacities, whereas the opposite is true for two‐lane highways and two‐ to five‐lane urban streets. In 
other words, at intermediate levels of congestion, the optimal balance lies somewhere between existing 
designs for minor highways and streets and those for major highways and expressways.  
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Investment balance for typical urban roads in the United States 
 
Small and Ng examine the investment balance condition for some road conditions observed in U.S. 
urban areas in 2011.  In the analysis, a good investment balance implies that no significant reductions in 
travel times could be realized by adjusting the investment from free‐flow speed to capacity, or vice 
versa.  Results are shown in Table 1 for seven cities, presented separately for freeways and arterial 
roads (note: an arterial road is a multilane road with few if any traffic lights).  The overall picture is that 
freeways demonstrate an over‐investment in free‐flow speed relative to capacity, whereas for arterials 
these two dimensions are quite well balanced.   
 
Table 1. Investment balance for average road conditions in 7 urban cities, 2011 

 
 
Each city’s roads are defined by the average number of lanes, free‐flow speed, peak speed (the average 
speed during the period of peak congestion), and the peak volume‐capacity ratio (the ratio of the actual 
volume of vehicles during the period of peak congestion to the maximum volume for which the roadway 
is designed).  The key indicator in Table 1 is the imbalance measure ‐ a more positive (negative) value 
favors investment in free‐flow speed (capacity).  An imbalance measure of ‐1.6 in Los Angeles freeways, 
for example, tells us that Los Angeles is over‐invested in free‐flow speed.  Travel‐time costs could be 
reduced (with no change in capital costs) if investments were shifted to capacity.  Alternatively, an 
imbalance measure of .04 in Denver arterials tells us that capacity and free‐flow speed are well 
balanced.  No significant reductions in travel‐time costs would be realized by shifting the investment mix 
in Denver arterials.   
 

Los 
Angeles

Dallas-
Fort 

Worth
Miami Boston Denver St. Louis

Jackson-
ville

Average no. of lanes 8.7 5.8 6.7 6.4 5.8 6.5 5.8
Free-flow speed (mi/h) 64.6 64.1 64 63.4 62.3 56 63.4
Peak speed (mi/h) 48.6 54 56.7 54.2 50.9 44.4 58.9
Peak volume-capacity ratio 1.016 1.003 0.994 0.999 1.004 0.993 0.976

Imbalance                         
(+ favors investment in    
free-flow speed)

-1.6 -1.23 -0.54 -0.88 -1.18 -0.21 -0.01

Average no. of lanes 3.6 3.7 4.6 2.3 3.5 3.2 3.7
Free-flow speed (mi/h) 43.7 39.1 39.2 36 38 34.9 43.3
Peak speed (mi/h) 37.4 33.1 31.7 29.5 32.1 29.8 37.4
Peak volume-capacity ratio 0.811 0.695 0.758 0.639 0.662 0.534 0.788

Imbalance                         
(+ favors investment in    
free-flow speed)

-0.08 0.04 0.08 -0.12 0.04 0.08 -0.04

Very large areas Large areas

Freeways:

Arterials:
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Absolute investment criteria 
 
Small and Ng analyze benefit‐cost ratios (B/C) for either capacity or free‐flow speed, each holding the 
other constant.  B/C ratios are defined as the ratio of total travel time savings from an incremental 
increase in capacity or free‐flow speed divided by the corresponding increase in annualized capital cost.  
The results of this analysis are presented in Table 2.  The case for investment is strong in both capacity 
and free‐flow speed, in all cities.     
 
Table 2. Absolute benefit‐cost ratios from incremental investments in capacity or free‐flow speed 

 
 
Each city is described by its average free‐flow speed, capacity, and capital cost/year/mile for the two 
types of roads.  Results are presented separately for freeways and arterials.  The variation in B/C ratios 
across cities is not surprising, considering the results in Table 1.  The case for investment in freeway 
capacity is extremely strong in Los Angeles and much less so in relatively uncongested Jacksonville.  For 
arterials, the case for capacity investment is strongest in Boston and weakest in St. Louis.  The case for 
investment in greater free‐flow speed is especially strong for Miami arterials.   
 
Policy Implications 
 
The empirical analysis provides suggestive evidence that in many large congested cities, standard 
expressway designs are unbalanced in the sense of providing more free‐flow speed than is desirable 
relative to capacity, whereas the same is not true for urban streets and arterial highways. This 

Los 
Angeles

Dallas-
Fort 

Worth
Miami Boston Denver

St. 
Louis

Jackson-
ville

Free-flow speed (mi/h) 64.6 64.1 64 63.4 62.3 56 63.4
Capacity (veh/h) 18,519 12,307 14,268 13,616 12,382 13,736 12,322

Capital cost                          
(1000 $ per year per mi)

2,789 2,278 2,426 2,356 2,224 2,147 2,256

B/C: incremental investment 
in capacity

49.2 37 23.4 30.8 37.8 25 9.4

B/C: incremental investment 
in free-flow speed

18.3 9.6 12 11.7 10.9 19.6 9.2

Free-flow speed (mi/h) 43.7 39.1 39.2 36 38 34.9 43.3
Capacity (veh/h) 3,216 3,337 4,284 1,589 3,123 2,751 3,393
Capital cost                          
(1000 $ per year per mi)

879 732 810 522 682 563 877

B/C: incremental investment 
in capacity

8.6 5.9 8.4 11.4 5.6 3.9 7.1

B/C: incremental investment 
in free-flow speed

5.4 7.2 11.4 3.8 7 6.2 5.7

Very large areas Large areas

Freeways:

Arterials:
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observation in turn suggests giving greater attention to the possibilities of more low‐footprint roads 
which offer considerable capacity even though speeds are only moderate even at low traffic levels.  
More generally, road design needs to allow for variety and flexibility, rather than being constrained to 
meet a predetermined set of standards such as those for U.S. Interstate Highways.   
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Optimizing Road Capacity and Type 
 

 
1. Introduction 

 

 The economic analysis of congestion and investment in road capacity is well developed. 

The research literature contains an abundance of optimality conditions, implications for pricing, 

and policy implications including such practical matters as second-best pricing, investment under 

conditions of suboptimal pricing, and financial balance between pricing revenues and investment 

costs.1 In such analyses, roads are generally taken to be sufficiently characterized by a single 

dimension, capacity, with other issues such as safety or aesthetic ride quality dealt with as 

separate side issues.2 In part, this emphasis is justified by the apparent dominance of congestion 

among the costs of urban road trips.3 

 Yet some of the most serious practical issues in road policy involve other aspects of roads 

such as their safety, environmental impacts, aesthetics, and impacts on neighborhoods and other 

considerations of urban design. As a result, passionate debates arise about not only the amount of 

road space to provide, but its type. In particular, the penetration of dense urban development by 

high-speed and high-capacity expressways has always been controversial. 

 Transportation economists have had less to say about these latter issues, and a major 

reason is the single capital dimension in the standard economic models of road investment. Yet it 

is entirely possible to build very different looking urban road networks of equal capacities, one 

using high-speed freeways and another using well-engineered arterials. These design tradeoffs 

require other measures of road capital than capacity. 

 The goal of this paper is to provide an expanded investment model that lends itself to 

analyzing such issues, by including free-flow speed as an additional design variable describing 

road capital. While naturally not every issue of interest can be captured with just one additional 

                                                 
1 Examples include Mohring and Harwitz (1962), Strotz (1965), Keeler and Small (1977), and Jansson (1984). For 
reviews see Lindsey and Verhoef (2000) and Small and Verhoef (2007, ch. 5). 

2 In two cases, however, these other road characteristics are explicitly modeled either as a type of scale economy 
(Jansson 1984, ch. 10) or as a quality variable (Larsen 1993). 

3 Small and Verhoef (2007), sect. 3.4.6. 
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variable, the advantages of tractability and transparency make this an attractive way to begin 

bringing the analysis of road types into mainstream transportation economics.  

 To implement the model, we use empirical data to estimate both investment costs and 

user costs as functions of the two design variables (capacity and free-flow speed). We estimate a 

construction-cost function using data on costs of various road types along with their free-flow 

speeds and capacities. We estimate a user-cost function from information about speeds and flows 

of different road types, differentiated by free-flow speed,4 which we supplement with a queuing 

analysis to account for situations where input flow exceeds capacity.  

 The result is a continuous, differentiable total cost function which permits standard 

investment analysis. The model produces the familiar criterion for incremental investment in 

capacity, and a new criterion for incremental investment in free-flow speed. We combine these 

criteria to examine how to recognize under what conditions a given road is well balanced 

between these two dimensions: i.e., when does a given road design provide too high or low a 

free-flow speed relative to its capacity? We examine this balance condition for 24 standard road 

types under hypothetical conditions, and for representative freeways and arterials for 47 US 

urban areas under actual conditions. 

 While our goal here is not primarily policy analysis, the model does permit another look 

at a question considered by Ng and Small (2012). Given that many high-speed urban 

expressways operate under severe congestion for several hours each day, is the extra expense of 

providing such high-speed service under more moderate traffic justified? In the extreme case 

where all traffic occurred during a peak period impacted by queues behind fixed-capacity 

bottlenecks, there would be no advantage to high free-flow speed. In more realistic cases, there 

are tradeoffs involving the duration of peak periods and the relative traffic volumes in peak and 

off-peak periods. Our earlier paper considers this question by comparing a few specific road 

types chosen to illustrate the tradeoff between free-flow speed and capacity, or between free-

flow speed and construction cost. Here, we develop a more general model of road investment 

where both capital costs and user costs can vary depending on free-flow speed and capacity, each 

of which lies along a continuum.  

                                                 
4 Such information is compiled in the Highway Capacity Manual (Transportation Research Board 2000) from 
decades of engineering research. 
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 We do find some evidence that typical freeways in large urban areas are over-designed 

for free-flow speed at the expense of capacity. This arises largely from the finding that the cost 

elasticity for increasing free-flow speed is, on average, more than three times that for expanding 

capacity (roughly 1.4 vs. 0.4); as a result even modest amounts of congestion favor incremental 

investments in capacity relative to free-flow speed. While the optimal road configuration is very 

case-specific, we can state a more general policy conclusion: road design needs to allow for 

variety and flexibility, rather than being constrained to meet a predetermined set of standards 

such as those for US Interstate Highways. There are probably many situations where urban areas 

are well served by parkways, high-type arterials, or urban streets with well-engineered 

intersections as a means of carrying large traffic flows efficiently. 

 

2. Long-run cost functions with two dimensions of infrastructure 

 

 Total costs of road travel in our model consist of amortized capital cost and user costs. 

We adopt simple formulations for each, in order to emphasize what is new in this paper, namely 

the role of free-flow speed as a design variable. Thus, for example, we ignore road maintenance 

costs (assuming they would not affect design), accident costs (as there is mixed evidence in the 

literature regarding the impact of design speed on accident rates),5 other user costs aside from 

time (assuming they are proportional to vehicle flow and therefore also do not affect design), and 

environmental costs (which are best dealt with using other tools). 

 Annualized capital cost is composed of initial costs of structures and land, each amortized 

at a constant rate over its lifetime. These costs depend on road design via the variables measuring 

capacity and free-flow speed: 

 

   ),(),(
1

, fKfKrfK SVrASVK
e

r
SV 


   (1) 

 

where VK and Sf are design capacity and free-flow design speed, respectively, K is construction 

cost, A is right-of-way acquisition cost, r is the interest rate, and Λ is the road life in years, i.e. 

                                                 
5 As discussed in Ng and Small (2012), some of the design features that could result in lower free-flow speeds (like 
narrower lanes or a lower type of road such as a highway instead of a freeway) do not necessarily lead to higher 
accident rates, especially if the roads are accompanied by lower speed limits. 
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the time after which the structures and improvements (but not the land) have lost all their value. 

We assume that K and A are increasing in both VK and Sf. This formulation assumes the 

annualized cost is constant over the road’s lifetime. 

 Total user cost Ut during time interval t consists solely of time costs measured at a 

constant value of time, α. User time depends both on free-flow speed and on congestion, the 

latter via the volume-capacity ratio: 
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









f
K

t
t

tttfKtt

S
V

V
S

VcVSVVU

,

,|


 (2) 

 

where t is a time interval (of duration qt), Vt is traffic volume, ct  is average user time cost, and St 

is average speed. The latter is assumed to be increasing in Sf, and to be decreasing and concave 

in volume-capacity ratio. 

 The short-run total cost function, including agency costs, is therefore: 
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where V={Vt} is the time pattern of vehicle flows.  

 The long-run cost function is obtained by choosing the design variables so as to minimize 

short-run total cost: 
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The conditions for this minimization constitute the investment rules governing capacity and free-

flow speed. Assuming interior solutions, they are: 

 

  






t K

t
tt

K V

c
Vq

V


 (4a) 

 

  






t f

t
tt

f S

c
Vq

S


 (4b) 

 

which state that each type of investment should be undertaken to the point where the resulting 

marginal saving in user cost equals its incremental annualized capital cost. The first of these 

investment rules is standard.6 The second is new to this paper, but obviously follows the same 

logic.  

 Equations (4a) and (4b) may be simplified by taking advantage of our assumption that 

user cost is a function of volume and capacity only through their ratio, an assumption which also 

underlies the analysis of self-financing by Mohring and Harwitz (1962, pp. 84-87).7 This 

assumption implies that 

 

 
t

t
t

K

t
K V

c
V

V

c
V



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
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from which we can rewrite (4a) and (4b) in elasticity terms as: 

 

 
ρ

R
meccVq

ρ
ε t

t
ttVKρ

~
)(

1
,    (5a) 

 

                                                 
6 This investment rule is given in various forms by Mohring and Harwitz (1962, p. 84), Strotz (1965, eq. 1.17), and 
Keeler and Small (1977), eq (5). See Small and Verhoef (2007, eq. 5.3) for a concise derivation. 
7 This assumption is sometimes described as constant returns to scale in congestion technology: see Small and 
Verhoef  (2007, p. 165). 
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   
t

tSfStttSf cVq ,,

1 


   (5b) 

 

where (mecc)t  Vt(ct/Vt) is the marginal external congestion cost of a trip, ,VK and ,Sf  are 

the elasticities of annualized capital cost with respect to capacity and free-flow speed, 

respectively, and S,Sf  is the elasticity of the function S() with respect to Sf. (This last elasticity 

may vary by time period.) The quantity R
~

 is imputed revenues from a hypothetical congestion 

toll set equal to mecct in each period when traffic is given by vector V.8 Therefore (5a) expresses 

the self-financing theorem, which states that annual revenues from such a toll would equal 

annualized capital costs times the cost elasticity of capital cost with respect to VK. Equation (5b) 

has no comparable interpretation, since there is no efficiency reason to impose a toll for free-

flow speed.  

 The quantities in equations (5a) and (5b) are likely to be quite case-specific, making it 

difficult to draw general conclusions from these investment criteria. However, we are more 

confident in their ratio, which is based on the relative costs of the two kinds of investment and 

the relative cost savings they provide to users. Therefore, we primarily consider what we call 

“investment balance,” defined by dividing (5a) by (5b): 
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This implication of the first-order conditions makes clear that if congestion is large, so that mecc 

exceeds cS,Sf for a large portion of the time, investment in capacity will be favored relative to 

that in free-flow speed. On the other hand, if peak traffic congestion is not severe and off-peak 

travel is extensive, the ratio on the right-hand side will tend to be small, favoring investment in 

free-flow speed. In what follows, we refer to the left-hand side (LHS) of equation (5c) as the 

“ratio of construction cost elasticities,” and the right-hand side (RHS) as the “ratio of marginal 

user costs” (i.e., the ratio of incremental user-cost savings from expanding capacity versus 

                                                 
8 As is well known, such a toll can be derived by maximizing the difference between consumers’ valuation of their 
travel (the area under their inverse demand curve) and total costs. See Keeler and Small (1977). 
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increasing free-flow speed). Our measure of “investment balance” is LHS – RHS; a positive 

number means that marginal investment in Sf is favored relative to that in VK. 

 Intuition is aided by an example. First, suppose travel time is given by the free-flow 

travel time plus a queuing time applicable only if capacity is exceeded: 

 

 




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.  (6) 

 

This piecewise-linear cost function describes the time-averaged user cost for a deterministic 

bottleneck of constant capacity, assuming there is no queue at the beginning of the time period. 

We then have mecc=α[(1/S)-(1/Sf)], S,Sf = S/Sf, and the first-order investment conditions are: 
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where total user cost U over all time periods has been divided into that due to free-flow travel 

time, U0  
t

ftt SVq / , and that due to congestion, Ug  U-U0. This example makes clear that a 

marginal increase in capacity is valuable when user costs of congestion (Ug) are high, whereas an 

increase in free-flow speed is valuable when user costs of free-flow travel (U0) are high.9 

 With more realistic models of speed determination, the more general equations (5) can be 

used to assess current or proposed planning for road capacity and type. A hypothesis motivating 

this paper is that current planning guidelines for urban areas may place too much emphasis on 

free-flow speed relative to capacity. This could take the form either of designing a give type of 

roadway for unnecessarily high speeds, or of choosing a higher type of roadway than necessary. 

Empirical measurements suggesting that the cost ratio on the right-hand side of (5c) exceeds the 

elasticity ratio on its left-hand side would provide evidence for this hypothesis.  

                                                 
9 Another example is when time spent in congestion is modeled, as is common, as a power function of the volume-
capacity ratio with power b. Then mecc=αb[(1/S)-(1/Sf)] and S,Sf =1; the optimization conditions are ,VK=bUg/ 
and ,Sf=U/. In this case cost added by congestion is affected by Sf, which is why the numerator of the second 
equation includes total user cost U and not just the uncongested portion U0 as it did in the other example.  
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 Alternatively, one can consider the tradeoff between free-flow speed and capacity 

inherent in any particular set of incremental plans or planning guidelines by rewriting (5c) as: 
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Suppose, for example, a particular road design could be modified at no change in cost so as to 

increase free-flow speed 2 percent by sacrificing one percent of capacity. This change would be 

beneficial if the ratio on the right-hand side of (5c) (computed with the proposed design in 

place) is less than 2, whereas a trade in the opposite direction would be beneficial if that ratio is 

greater than 2. As a reminder, all these types of statements presume that there is a continuum of 

possible designs and that the resulting costs are smooth functions. 

 

3.  Empirical estimation of cost functions 

 

3.1 Data for costs, free-flow speeds, and capacities 

 

 We wish to estimate construction costs as a function of capacity and free-flow speed, 

while holding constant other factors such as terrain, climate, and input prices. Since we are more 

interested in the relative costs of different types of roads than their absolute costs, we are not too 

concerned about whether we have representative values for those other factors, but do want 

detailed differences among road types. Such data are provided by the Specifications and 

Estimates Office of the Florida Department of Transportation (FDOT). These data contain 

estimated quantities and prices of inputs needed for various types of roads in urban areas, while 

holding other factors constant.  

 The basic data, shown in Table 1, tell us about the tradeoffs among alternative road 

designs discussed in previous sections. For example, as we shall see shortly, a 4-lane divided 

urban street has the same free-flow speed as an undivided 5-lane urban street with a center turn 

lane, but the former costs more and has higher capacity. Meanwhile a 4-lane Interstate offers 

greater free-flow speed but lower capacity than a 6-lane multilane highway, with only a small 
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cost difference. Thus, capacity and free-flow speed show sufficient independent variation that we 

expect to see some possibilities for substitution of the type highlighted in equation (5c). 

 

Table 1. FDOT cost estimates (in 2011 prices) 

Description 

No. 
lanes 

Bike 
lane 

(width)

Median 
(width) 

Shoulders 
(inside & 
outside) 

Cost per 
mile  

(mill. $)
Undivided arterial 2 4 ft --- --- 4.794 
Undivided arterial with center lane  3 4 ft --- --- 4.769 
Undivided arterial 4 4 ft --- --- 5.132 
Undivided arterial with center lane 5 4 ft --- --- 5.814 
Divided arterial   4 4 ft 22 ft --- 7.123 
Divided arterial  6 4 ft 22 ft --- 7.986 
Divided Interstate, closed median 

with barrier wall 
4 --- 22 ft 10 ft 8.875 

Divided Interstate, closed median 
with barrier wall 

6 --- 22 ft 10 ft 9.858 

Source: Statewide cost estimates published in January 2012 by the Specifications and Estimates Office of the 
Florida Department of Transportation (http://www.dot.state.fl.us/specificationsoffice/).  
  

 These cost estimates are even more useful because they contain detailed information on 

individual components such as embankment, pavement, pipe culverts, lighting, etc. This 

additional information enables us to double our sample size by estimating, for each road type, the 

cost of an otherwise identical road but with 11-foot lanes instead of the default lane width of 12 

feet. This is done by reducing the relevant costs (embankment, stabilization and pavement costs) 

proportionately, while keeping other costs (such as the costs of pipe culverts, curbs and gutters, 

pavement markings, lighting and signage) constant. Since 11-foot lanes are recognized in the 

Highway Capacity Manual (HCM) (Transportation Research Board 2000), we will be able to 

measure the deterioration of service quality and capacity that accompanies the lower costs and, 

as we shall see, these two dimensions are not degraded proportionally. 

 In order to calculate free-flow speeds and capacities for each road type, we use the 2000 

Highway Capacity Manual, supplemented where necessary by the FDOT road descriptions and 

HCM default values; see Appendix A for other assumptions and the equations.10 The HCM has 

separate procedures for freeways, urban streets, and “highways” (which have design standards 

                                                 
10 Although there is a newer edition of the HCM (the 2010 version), we use the 2000 version so that the results in 
this paper are consistent with those presented in Ng and Small (2012). 
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between those of freeways and urban streets).11 We are therefore able to further expand our data 

set by assuming that FDOT’s “arterial” can be either an urban street with traffic signals or a 

highway (except we assume only an urban street can have a center lane). We assume that 

highways have grade-separated intersections at all major crossings and there are no signals but 

like urban streets, there are some at-grade access points (e.g., driveways). It is further assumed 

that urban streets have one signal per mile while highways and freeways have an interchange 

with an urban street every two miles. We use the cost estimates for traffic signals and 

interchanges included in the FDOT dataset and add them to the costs shown in Table 1 (see 

Appendix B for more detail).  

 Urban streets require several further assumptions. We assume they have limited parking 

and little pedestrian activity. We assign speed limits of 45 mi/h and 40 mi/h for the roads with 

12-foot lanes and 11-foot lanes, respectively (since free-flow speed depends on, though is not 

equal to, the speed limit). We also must make assumptions about the number of turn lanes and 

signal phasing for left-turn lanes (see Appendix A).12 For each assumed turn-lane and signal 

configuration, we calculate the saturation flow rate, i.e., the highest flow rate that can pass 

through a signalized intersection while the light is green, and from that we calculate capacity 

following the HCM.  

 The assumptions just described lead to 24 road types, each with its unique cost, capacity, 

and free-flow speed. From these 24 observations, summarized in Table 2, we fit function 

K(VK,Sf) describing initial construction  cost.  

 

                                                 
11 In deference to this distinction, we use “road” as a general term encompassing all three types, so as to avoid the 
ambiguity of the term “highway” that exists in the HCM (even in its title) between the general or specific meaning 
of “highway.” 

12 Signal phasing means the types of turns permitted on successive parts of a complete cycle for a traffic signal. The 
two categories of phasing of primary concern to us are permitted versus protected left turns: “permitted” means left 
turns are allowed whenever the light is green and there is a gap in oncoming traffic, whereas “protected” means left 
turns are allowed only with a green arrow during which oncoming traffic is stopped with a red signal. 
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Table 2. Road types and construction cost per mile  

No. of 
lanes (two-
directional) 

Road 
type 

Lane 
width 
(feet) 

Unim-
peded 
speed 
(mi/h) 

Free-
flow 
speed 
(mi/h) 

Two-
directional 
capacity 
(veh/h) 

Road 
cost per 

mile 

Signal/ 
inter-

change 
cost 

Total 
cost per 

mile 

(thousands of $) 

2 lanes, 
undivided 

Urban 
street 

12 42.1 35.8 1,277.6   4,794  155   4,949  
11 40.2 34.4 1,245.1   4,647  155   4,802  

Two-lane 
highway 

12 52.5 52.5  3,112.4   4,794   6,716   11,510 
11 47.1 47.1  3,112.4   4,647   6,511   11,158 

3 lanes, ctr 
turn lane 

Urban 
street 

12 42.1 35.8  1,637.0   4,769  155   4,924  
11 40.2 34.4  1,582.4   4,581  155   4,736  

4 lanes, 
undivided 

Urban 
street 

12 43.1 36.5 1,930.2   5,132  195   5,328  
11 41.2 35.1 1,891.9   4,909  195   5,104  

Multilane 
highway 

12 51.8 51.8  7,306.1   5,132   7,190   12,323 
11 49.9 49.9  7,169.7   4,909   6,877   11,786 

5 lanes, ctr 
turn lane 

Urban 
street 

12 43.1 36.5  3,273.1   5,814  195   6,009  
11 41.2 35.1  3,164.0   5,537  195   5,732  

4 lanes, 
divided 

Urban 
street 

12 43.1 36.5  3,745.7   7,123  195   7,318  
11 41.2 35.1  3,620.9   6,854  195   7,050  

Multilane 
highway 

12 53.4 53.4  7,421.0   7,123   9,979   17,102 
11 51.5 51.5  7,284.6   6,854   9,603   16,457 

Freeway 
12 65.5 65.5  8,455.0   8,875   12,433   21,308 
11 63.6 63.6  8,386.8   8,353   11,702   20,055 

6 lanes, 
divided 

Urban 
street 

12 43.5 36.8  5,618.6   7,986  236   8,222  
11 41.6 35.4  5,431.3   7,639  236   7,876  

Multilane 
highway 

12 53.4 53.4  11,131.6   7,986   11,189   19,175 
11 51.5 51.5  10,926.9   7,639   10,703   18,342 

Freeway 
12 67.0 67.0  12,763.3   9,858   13,811   23,668 
11 65.1 65.1  12,661.0   9,215   12,910   22,125 

Note: We use “free-flow speed” to designate the speed at very low traffic levels, as does Schrank et al. (2012b). The 
HCM defines it the same way for freeways and highways. But for urban streets, the HCM defines free-flow speed to 
exclude the effects of  “control delay”, which is the delay caused at intersections by stopping and/or waiting behind 
other stopped vehicles while they start up and proceed through the intersection; here we call this the “unimpeded 
speed.” Formulas for calculating both unimpeded speed and control delay are provided by Zegeer et al. (2008) and 
the HCM (see Appendix A), and used here to compute “free-flow speed” as well as, in the next section, speed as a 
function of traffic volume.  
 

 These estimates imply construction costs per lane-mile, for 12-foot lanes, of roughly 

$4.0–5.3 million for freeways and $1.3–2.5 million for urban streets, with multilane highways in 

between. As a comparison, Schrank et al. (2012a) estimate that new construction can cost 
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between $5-20 million per lane-mile for freeways, and around $1.5 million for “major surface 

streets,” although their numbers likely include land acquisition costs. 

 
3.2 Estimation of capital cost function 

 

We use a translog function to estimate the relationship between construction cost per mile 

(denoted by K, measured in thousands of dollars), free-flow speed (Sf), and capacity (VK), with 

the right-hand-side variables as ratios to their sample means: 
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The sample means for free-flow speed and capacity are 45.80 mi/h and 5,589 veh/h, respectively. 

 The regression results, using ordinary least squares on 24 observations, are shown in 

Table 3. Although none of the second-order terms are statistically significant (at a five-percent 

level), we prefer the second specification because it allows for varying elasticities, even though 

the estimated extent of variation is not large. Using that specification, the implied elasticities of 

construction cost with respect to free-flow-speed and capacity are  

 

        KKfSfK VVSS /ln/ln 5031,   ;      ffKKVKK SSVV /ln/ln 542,   . 

 

As indicated by the first two coefficients of the right column, these elasticities are 1.36 and 0.40, 

respectively, when calculated at the sample means. Thus increasing capacity—for example, by 

building more lanes of a given road type—is subject to strong scale economies, a finding 

consistent with evidence in Meyer et al. (1965) and Kraus (1981).13 What is new here, and 

potentially important, is the finding of scale diseconomies with respect to free-flow speed. Our 

estimate suggests that increasing free-flow speed is quite expensive, even holding capacity 

constant. 

                                                 
13 Kraus finds scale economies are substantially reduced, though not eliminated, by considering the effects produced 
by the high cost of enlarging intersections as an entire network of roads is expanded. Such costs are not considered 
here, at least not explicitly. 
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Table 3. Construction cost regression results  

Variables ln K ln K 

ff SS lnln   1.4401*** 1.3552*** 
 (0.136) (0.153) 

KK VV lnln   0.3314*** 0.3997*** 
 (0.044) (0.068) 

2)ln(ln5.0 ff SS   
 0.7975 

  (1.797) 
2)ln(ln5.0 KK VV    0.3800* 

  (0.218) 

)ln)(lnln(ln KKff VVSS     -0.8708 
  (0.520) 
Constant 9.3192*** 9.3261*** 
 (0.021) (0.038) 
   
Observations 24 24 
R-squared 0.976 0.982 

 
Note: Standard errors in parentheses.  
***, ** and * indicate statistical significance at the 1, 5 and 10 percent levels, 
respectively. 

 

 The regression results can be used to predict construction costs for a range of free-flow 

speeds and capacities. Figure 1 shows these predicted costs as well as a scatter plot of the actual 

24 data points. It provides an illustration of how construction costs increase as both free-flow 

speed and capacity increase. An exception occurs at extremely low capacities combined with 

high free-flow speeds, situations that are unrealistic and for which we neither have observations 

nor wish to do simulations. 
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Figure 1. Contour plot of predicted costs using translog coefficient estimates and 
scatterplot (in black) of observed data points 

 
 

To estimate the annualized capital cost of building a road, we combine the construction 

costs (K) from equation (8) with some assumptions on right-of-way acquisition cost (A), the 

interest rate (r), and the road life in years (), in order to calculate equation (1). Based on Ng and 

Small (2012), variable A typically ranges from about 3 to 6 percent of total capital cost for urban 

areas with a population of 0.2 to 1 million people, and is about 18.3 percent for urban areas with 

one million people or more.14 Denoting these percentages as x (expressed as a decimal), we can 

express the right-of-way acquisition cost as a fraction of construction cost: A = K·[x/(1-x)]. The 

annualized capital cost per mile from equation (1) can therefore be rewritten as:  
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14 These statements from Ng and Small (2012) are in turn based on cited figures from Alam and Ye (2003) and 
Alam and Kall (2005). 
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 Given exogenous values of r,  and x, the factor in parentheses on the right-hand side of 

(9) is a constant, which we denote as . Taking the natural logarithm of equation (9) and 

substituting in equation (8) (without the error term) yields: 
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Therefore the capital cost elasticities are the same as those from the construction cost function. 

 

4.  Speeds and travel times 

 

 To determine travel times on the road types described in the previous section, we 

consider four factors: (1) free-flow-speed; (2) slower speeds, based on the HCM speed-flow 

curves, when traffic flow increases but is still below capacity; (3) control delay due to traffic 

signals, applicable only to urban streets; and (4) congestion delay from queuing when demand 

exceeds capacity. The first three components are based on the HCM procedures described in 

Appendix A. 

The fourth component of travel time, congestion delay, is based on the bottleneck 

queuing model, which with some minor modifications is the same as that in Ng and Small (2012) 

as well as in the first example in Section 2. We assume that the bottleneck occurs at the entry to 

the road, and there are two time periods for one-directional traffic: a “peak” period of duration P 

(in hours) with constant demand Vp, and an “off-peak” period of duration F with constant 

demand Vo. A queue (assumed to have zero physical length) builds up if demand exceeds 

capacity VK. The model of Ng and Small assumes that the queue gradually discharges when 

demand falls below capacity, and so if Vo<VK<Vp, off-peak travelers typically experience some 

queuing delay. However, this would be inconsistent with the assumptions of the theoretical 

model in Section 2 where it is assumed that travelers in one time period do not affect the travel 

times of travelers in other time periods (i.e., user cost, ct, depends only on traffic conditions in 

time period t and not on those in any other time period). Therefore, when calculating travel times 



 16

in this section we simplify by ignoring the queuing delay experienced by some off-peak 

travelers; thus off-peak travel times are underestimated when peak volumes exceed capacity. 

 We assume that the road is 10 miles in length, which is close to the average vehicle trip 

length of 9.72 miles reported in the National Household Travel Survey (Federal Highway 

Administration 2009, Table 3). The durations of the time periods are assumed to be P = 4 hours 

and F = 12 hours, respectively. (Under our assumptions the value of F does not affect travel 

time, but it is used later when calculating aggregate travel times for all travelers.) 

 Average travel times incorporating all four components just described are calculated for 

each of the 24 road types listed in Table 2 at volume-capacity ratios ranging from 0 to 1.5 (at 

0.01 increments). This results in a panel dataset with 3,624 observations of average travel time in 

minutes, avgttij , where i indexes road type and j indexes the volume-capacity ratio. We shall 

refer to these data as the HCM data. 

 However, these calculations depend explicitly on the road type. Noting that the speed 

function in equation (3) can be expressed in terms of travel time (T) for a road of length L, 

TtL/St, we need travel time to depend only on free-flow speed (Sf) and volume-capacity ratio 

(vV/VK) in order to apply the theory developed in Section 2. We therefore seek a functional 

form that can adequately represent the results of our more detailed calculations. The most 

realistic fit is obtained using a variation of the function proposed by Akçelik (1991) for the 

purpose of representing both normal flow (volume less than capacity) and queued flow in a 

single function, as described by Small and Verhoef (2007, eq. 3.11). The original Akçelik travel 

time function is: 
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where TfL/Sf is free-flow travel time and Ja is a constant taking on different values depending 

on the type of road, ranging from 0.1 for freeways to 1.6 for high-friction secondary arterials. 

The term under the square root provides for a modest increase in travel time with v when v<1, 
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and for an increase approaching that from deterministic queuing behind a bottleneck when 

incoming flow is significantly greater than capacity.15 

 To fit with our theoretical model, however, the function cannot depend on road type 

except through Sf, nor can it depend on capacity except through the ratio vV/VK. We therefore 

estimate a variant, motivated by two facts: (i) in Akçelik’s derivation, the first term depends on 

the length of the road L but the second does not since it represents queuing delay at the a single 

choke point; and (ii) empirically, Sf is positively correlated with (Ja/VK). The modified Akçelik 

function is: 
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We estimate the equation holding constant P=4 hours and L=10 miles, which are the parameters 

we use to compute the HCM travel times that are the observations in the estimation. Each 

observation consists of one of our 24 road types and one of 151 values of v distributed evenly 

between zero and 1.5. 

 Our estimates, using nonlinear least squares, are given in Table 4. We note that our 

estimate of 1 is close to the value of 0.25 derived by Akçelik on theoretical grounds, as shown in 

equation (11). 

 

Table 4. Estimates of modified Akçelik function 

Parameter Estimate Standard error 
1 0.2929 0.0010 
2 126.3 38.0 
3 -0.1726 0.0085 

 
Note: Based on 3,624 observations. R-squared = 0.9866. 

 

 Figures 2 through 4 compare the predicted travel times from equation (12) with those 

from which it was fitted (what we call “the HCM procedure,” which means the HCM 

supplemented by our queuing model). They do this for a variety of road types with 12-foot lanes. 

                                                 
15 When the “delay parameter” Ja is zero, this equation simplifies to T=Tf for v1 and T=Tf+(1/2)P[v-1] for v>1.  
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For convenience, travel times are given in minutes. Figures 2 and 3 graph these travel times as a 

function of volume-capacity ratio v, whereas Figure 4 graphs them as a function of free-flow 

speed Sf.   

 

Figure 2. Travel times for selected streets and highways 
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Figure 3. Travel times for a four-lane divided highway and freeway 
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Figure 4. Travel times as a function of free-flow speed, 
for selected values of volume-capacity ratio 
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 In general, the modified Akçelik function reproduces the shapes of the relationships quite 

well, while eliminating the kinks at v=1 that are an unrealistic artifact of the use of different 

procedures for v<1 and v>1. Especially helpful is that the modified function eliminates the 

unrealistic non-convexity at v=1 that occurs in our HCM procedure for urban streets, seen in 

Figure 2. The modified Akçelik function also captures the feature, arising directly from the 

HCM, that the travel time function is very flat almost up to v = 1 for higher road types. However, 

it underestimates travel times for two-lane highways because it interprets their relatively high 

free-flow speed as indicating a high road type, whereas actually traffic slows noticeably on two-

lane highways even for moderate traffic levels. When queuing occurs (e.g., at v =1.3 as seen in 

Figure 4), predicted travel times are slightly underestimated for urban streets and two-lane 

highways, and overestimated for multilane highways and freeways. 

 Figures 2 through 4 show that our modified Akçelik function is convex in both traffic 

level (v) and free-flow speed (Sf). This guarantees that second-order conditions for cost 

minimization are met, so we do not need to explicitly derive and calculate values for those 

conditions.  

 The derivatives of the modified Akçelik function lead to the following values needed to 

calculate equations (5c): 
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where 
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The asymptotic slope of (14) is proportional to P, just as for a simple bottleneck.16 

 

5. Numerical results for investment balance 

 

 We now apply the model to some examples of roads to see under what conditions these 

roads embody the optimal balance between Sf and VK indicated by equations (5c). In Section 5.1 

we consider a wide selection of roads and traffic levels, in order to explore the range of 

conditions when each type of road is appropriate. In Section 5.2 we look at empirical data to see 

whether representative roads in various cities would better serve their areas with a different type 

of design. In Section 5.3, we go further and examine the absolute criteria for investing in 

capacity or free-flow speed, i.e. equations (5a-b), for the same sample of cities and for a 

hypothetical example illustrating the possibility of trading off free-flow speed against capacity. 

 

5.1 Sampling the universe of urban road conditions 

 

 We first consider the investment balance condition for the specific road types we have 

been analyzing, shown in Table 2. We do so for peak volume-capacity ratios ranging from 0.1 to 

1.25, holding constant the peak and off-peak durations (P=4 hours and F=12 hours, 

respectively), the ratio of peak to off-peak volume (Vp/Vo=1.25), and other assumptions taken 

from Ng and Small (2012).17 We believe these assumptions are relatively favorable to investment 

in free-flow speed; in particular, many congested cities probably have considerably higher values 

of Vp/Vo.
18 

                                                 
16 As v→, the second term in parentheses in (14) approaches 1 while the third term disappears, so that 
T/V→21P/VK. If 1 were equal to 0.25 as in the original Akçelik formula, this would be exactly the asymptotic 
slope of the average wait through a bottleneck of capacity VK over period P when that capacity is exceeded, as in 
equation (6). This is why our predicted travel-time curves rise nearly linearly with traffic at high traffic levels in 
Figures 2 and 3; their slopes are slightly higher than for the “HCM procedure” because our estimate of 1 slightly 
exceeds 0.25. 

17 These are: Peak period (in a given direction) occurs 310 days per year; off-peak period occurs for 12 hours/day on 
those same 310 days, and also occurs for 16 hours/day on the other 55 days.  

18 According to Hu and Reuscher (2004), 59 percent of all national person trips occur during the twelve off-peak 
hours defined by 9 a.m. – 1 p.m. and 4–10 p.m. If it is evenly divided in direction, this amounts to about 5 percent of 
trips per hour on a one-directional roadway. Another 37 percent, or 6 percent per hour, occur within the six peak 
hours 6–9 a.m. and 1–4 p.m. This would imply a national average peaking ratio of Vp/Vo =6/5=1.2 if the peak trips 
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 Some results are shown in Figure 5 (Appendix C has further details). The thick line 

shows the left-hand side of equation (5c) (the ratio of construction cost elasticities); whereas the 

thin and the dashed lines show the right-hand side (the ratio of marginal user costs) for three 

values of peak volume-capacity ratio (Vp/VK). Incremental investment in Sf is more favorable 

than investment in VK when the ratio of construction cost elasticities exceeds the ratio of 

marginal user costs, i.e., when the thick line lies above the thin or dashed line. We can see that 

when Vp/VK = 0.3, investing in Sf is more beneficial for all types of roads except two-lane urban 

streets. But under highly congested conditions, as when Vp/VK = 1, investment in Sf is never 

favored: rather, it is always better at the design stage to sacrifice some free-flow speed in order to 

increase capacity.  

 The intermediate case where Vp/VK = 0.8 is illuminating. With this level of peak traffic, 

all the highways and expressways of four lanes or more offer inefficiently high free-flow speeds 

relative to their capacity; whereas two-lane highways and two- to five-lane urban streets would 

benefit relatively more from expanding free-flow speed. A corollary is that if peak traffic 

congestion is at this level and if capacity is being optimized as called for by (4a), then (4b) 

indicates that the most highways and expressways exhibit over-investment in free-flow speed 

under the design standards embedded in the Florida cost data. 

 

                                                                                                                                                             
are distributed evenly across directions, or 9/5=1.8 if half of the peak trips are concentrated in one direction 
(inbound in the morning, outbound in the afternoon).  
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Figure 5: The investment balance condition (5c) for 24 road types 
 

  

Note: Investment in Sf is favored relative to that in VK when the LHS (ratio of construction cost elasticities: thick 
line) exceeds the RHS (ratio of marginal user costs: thin and dashed lines). 
 
 

 While these results are computed for a particular ratio of peak to off-peak traffic volume 

(Vp/Vo=1.25), they are quite insensitive to that ratio.19 As we shall see, however, the analysis of a 

large discrete change can be more sensitive to this assumed ratio. 

                                                 
19 This is because, as Vp/Vo increases, both the marginal external congestion cost and the average user cost of peak 
travelers rise relative to those of off-peak travelers; but since one is in the numerator and the other in the 
denominator of the ratio of marginal user costs, that ratio, which is the right-hand side of (5c), remains relatively 
constant. The left-hand side of the equation does not depend on traffic volumes at all; thus, the relationship between 
the two sides of the equation is relatively unaffected. 
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 Figure 6 broadens the computations to a wide range of free-flow speeds and capacities. 

For each combination of these two investment variables, it displays the “critical traffic level,” 

defined as the maximum value of Vp/VK for which the ratio of construction cost elasticities 

exceeds the ratio of marginal user costs (a situation favoring investment in free-flow speed 

relative to that in capacity). In other words, for any given road type, investment balance is 

realized when peak traffic congestion is described by the critical traffic level; if congestion is 

less the road is too slow at low flows, whereas if congestion is greater the road is over-invested 

in free-flow speed.  

 

Figure 6. Critical traffic levels for various free-flow speeds and capacities,  
and scatter plot (in black) of FDOT road types 

 

 
Note: The critical traffic level is the maximum Vp/VK for which incremental investment in Sf is more favorable than 
investment in VK, according to equation (5c). It is calculated for 0.5 mi/h increments of free-flow speed and 20 veh/h 
increments of two-directional capacity.    
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 In the upper left portion of the figure, with high free-flow speed but low capacity, the 

critical traffic level is zero: investment in capacity instead of free-flow speed is strongly 

preferred. As free-flow speeds and capacities rise, in general the critical traffic level increases; 

for many types of roads, it is between 0.9 and 1.0 (just before queuing begins), which is intuitive 

because queuing causes the marginal external congestion cost to rise significantly, making the 

case for capacity investment much more compelling. In the unshaded lower right portion of the 

figure, the critical traffic level is not calculated but is probably greater than 1.25;20 these are 

high-capacity roads with low free-flow speed that would strongly benefit from incremental 

investment in free-flow speed. 

 For the road types in our sample, shown as black dots in the figure, the critical traffic 

levels range from 0.1 to 0.5 for urban streets of less than five lanes, and from 0.6 to almost 1.0 

for all other road types. Corresponding average peak speeds for these critical traffic levels, 

shown in Appendix C, range from 28 to 36 mi/h for urban streets and two-lane highways, and 

from 47 to 56 mi/h for multilane highways and freeways. It is apparent that whenever there is 

substantial peak congestion, a reconfiguration of these roads to extract more capacity at the 

expense of free-flow speed would be beneficial if it could be done at the design stage.  

 

5.2 Investment balance for typical urban roads in the United States 

 

 We now examine the investment balance condition for some road conditions observed in 

US urban areas in 2011. We use the average free-flow speed and average peak speed for 

“freeways” and “arterials”, as compiled by the Schrank et al. (2012b), for “very large” and 

“large” urban areas.21 

 To compute the investment balance condition, we also need to know road capacity and 

peak volume-capacity ratio. We combine data on road mileage from the Federal Highway 

Administration’s Highway Statistics (2013) with lane-miles data from Schrank et al. (2012b) to 

obtain the average number of lanes for freeways and arterials in each urban area and use this to 

                                                 
20 The critical values are not calculated explicitly here because this region violates our model’s assumption that 
Vo/VK < 1 (i.e., off-peak volumes do not encounter queuing).  

21 These areas are defined as having population more than 3 million and 1–3 million, respectively. The data are from 
Schrank et al. (2012b), Appendix A, Exhibit A-8.   
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estimate capacity, assuming that arterials are equivalent to urban streets with signals (see 

Appendix C for details). Knowing both free-flow speed and peak speed, we can solve (12) 

iteratively to determine the peak volume-capacity ratio vp; we then assume vp/vo=1.25, as before, 

to get the off-peak ratio. Thus, for each urban area we have a representative “average” road 

(either a freeway or arterial) with unique free-flow speed, capacity, and peak/off-peak volume-

capacity ratio; we use this information to calculate the two sides of the investment balance 

condition (equation [5c]). Note that because our calculations are highly non-linear, the 

investment balance for a representative road does not necessarily apply to the entire urban area.  

 We present the results of a sample of seven urban areas, chosen to cover most of the 

range of observed speeds on each road type, in Table 5. 
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Table 5. Investment balance for average road conditions in seven urban areas, 2011 
 

    Very large areas  Large areas 

  
  

Los 
Angeles 

Dallas-
Fort 

Worth 
Miami Boston 

 
Denver 

St. 
Louis 

Jackson-
ville 

Freeways:         

 Average no. of lanes 8.7 5.8 6.7 6.4  5.8 6.5 5.8 

 
Free-flow speed, Sf 
(mi/h) 

64.6 64.1 64.0 63.4  62.3 56.0 63.4 

 Peak speed, Sp (mi/h) 48.6 54 56.7 54.2  50.9 44.4 58.9 

 
Peak volume-capacity 
ratio, Vp/VK 

1.016 1.003 0.994 0.999  1.004 0.993 0.976 

 
Ratio of construction 
cost elasticities 

0.95 0.43 0.58 0.54  0.48 0.77 0.45 

 
Ratio of marginal user 
costs 

2.55 1.67 1.12 1.42  1.66 0.99 0.46 

 
Imbalance (+ favors 
investment in Sf) 

-1.60 -1.23 -0.54 -0.88  -1.18 -0.21 -0.01 

            
Arterials:         

 Average no. of lanes 3.6 3.7 4.6 2.3  3.5 3.2 3.7 

 
Free-flow speed, Sf 
(mi/h) 

43.7 39.1 39.2 36.0  38.0 34.9 43.3 

 Peak speed, Sp (mi/h) 37.4 33.1 31.7 29.5  32.1 29.8 37.4 

 
Peak volume-capacity 
ratio, Vp/VK 

0.811 0.695 0.758 0.639  0.662 0.534 0.788 

 
Ratio of construction 
cost elasticities 

0.13 0.20 0.30 0.06  0.20 0.21 0.15 

 
Ratio of marginal user 
costs 

0.20 0.17 0.22 0.17  0.16 0.13 0.19 

  
Imbalance (+ favors 
investment in Sf) 

-0.08 0.04 0.08 -0.12  0.04 0.08 -0.04 

 
Note: The imbalance is calculated as the ratio of construction cost elasticities minus the ratio of marginal user costs. 
Sources: Schrank et al. (2012b), FHWA (2013), and authors’ calculations; see text and Appendix C for more details. 
 

 From Table 5, we can see that the overall picture is that freeways demonstrate an over-

investment in free-flow speed relative to capacity, whereas for arterials these two dimensions of 

investment are quite well-balanced. For example, despite its already high capacity, a 

representative Los Angeles freeway would benefit more from further capacity expansion than 

from further investment in free-flow speed, due to heavy congestion (second-lowest peak 

freeway speed among all urban areas). Peak freeway speed is lowest in St. Louis; but so is its 
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free-flow speed, and as a result its investments are much closer to balance although still favoring 

capacity expansion. To put it differently, the case for giving up some free-flow speed in 

exchange for more capacity (for example by restriping for narrower lanes) is less strong in St. 

Louis than in Los Angeles.22  

 For arterials, the imbalance is generally quite close to zero. The biggest imbalance is in 

Boston, for which an unusually small average lane width and high congestion imply a relative 

preference for capacity. In Miami and St. Louis, there is a slightly greater incremental benefit 

from improving arterial free-flow speeds than for expanding arterial capacity. Increasing free-

flow speed for arterials—which here are assumed to be urban streets with signals—need not 

necessarily imply upgrading to a higher road type, but could involve targeted upgrades to reduce 

delays from traffic signals. Such upgrades are analyzed by Samuel (2006, ch. 4), who describes a 

number of innovative intersection designs that improve both free-flow speed and capacity with 

modest cost and land requirements. Since these improvements also increase capacity, it is 

unclear without more detailed analysis what their availability implies for investment balance as 

defined here. 

 

5.3 Absolute investment criteria 

 

 In addition to examining the relative investment criterion, we can analyze the absolute 

investment criterion for either capacity or free-flow speed, each holding the other constant. The 

criteria are contained in equations (4a) and (4b), respectively, or equivalently (5a) and (5b). We 

summarize by calculating the benefit-cost ratio as the travel time savings from an incremental 

increase in free-flow speed divided by the corresponding incremental capital cost. From equation 

(5a), investment in VK is warranted if the benefit-cost ratio exceeds one: 

 

                                                 
22 We perform a sensitivity analysis by assuming P=2 and F=14 instead and reestimating the travel time function. 
Since there are now fewer vehicles affected by congestion and for a given value of vp, there is also less congestion, 
many road types now have a higher critical traffic level (defined in Section 5.1), i.e., there are now more instances 
where incremental investment in Sf rather than VK is beneficial. As a result, in many urban areas, the freeway 
imbalance becomes positive though very close to zero, in contrast to the case of P=4 where nearly all of the 
imbalances were negative; whereas the arterial imbalance is still fairly similar (close to zero). We consider the 
assumption of P=4 for one-way travel to be more realistic and it is in line with Schrank et al.’s (2012b) definition of 
peak hours as 6-10 a.m. and 3-7 p.m., but it is useful to keep in mind that the “balance” for a real road depends quite 
sensitively on the peaking characteristics. 
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Similarly, equation (5b) yields the investment criterion for free-flow speed: 
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The components of these equations can be computed using equations (10), (13), and (14) along 

with assumptions about amortization, land acquisition, value of time, duration of travel periods, 

capacities, volume-capacity ratios, and trip length.23 

 One can alternately view this calculation as the maximum cost multiplier that could 

justify the investment under consideration, where by “cost multiplier” we mean the incremental 

cost of expanding either Sf or VK for a given hypothetical project, divided by the corresponding 

incremental cost as observed in our Florida cost data. Even so, this calculation should not be 

taken too literally, because it does not account for induced traffic: the tendency of greater 

capacity to attract new users. As a result, it will exaggerate the benefit-cost ratio that could be 

achieved in reality, as demonstrated by SACTRA (1994). In addition, we reiterate that we have 

less confidence in the absolute than in the relative calculations. 

 Table 6 shows the results for the sample of cities already discussed in Section 5.2. Using 

these figures, the case for investment is strong in both dimensions, in all areas. The variations 

across cities are not surprising. The case for investment in freeway capacity is extremely strong 

in Los Angeles, with its low average peak freeway speed, and much less so in relatively 

uncongested Jacksonville. For arterials, the case for capacity investment is strongest in Boston 

and weakest in St. Louis. The case for investment in greater free-flow speed is strongest for St. 

                                                 
23 In addition to the assumptions mentioned in previous sections, we need values for the interest rate (r), lifetime of 
the road () and land acquisition costs as a percentage of total capital cost (x) to calculate ρ using equation (10). 
Based on Ng and Small (2012), we set r=0.07, =25 years and x=0.183 (since the urban areas in our sample have 
populations of 1 million or more). We use the same value of time per vehicle as Schrank et al. (2012b), namely 
$16.79/hr, who base their figure on McFarland and Chui’s (1987) estimate, updated to 2011 dollars, and on assumed 
average vehicle occupancy of 1.25. 
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Louis freeways and Miami arterials, while weakest for Jacksonville freeways and Boston 

arterials. 

 

Table 6. Absolute benefit-cost ratios from incremental investments,  
assuming Florida capital costs and no induced traffic 

 

    Very large areas  Large areas 

  
  

Los 
Angeles 

Dallas-
Fort 

Worth 
Miami Boston  Denver 

St. 
Louis 

Jackson-
ville 

Freeways:         

 
Free-flow speed, Sf 

(mi/h) 
64.6 64.1 64.0 63.4  62.3 56.0 63.4 

 Capacity, VK (veh/h) 18,519 12,307 14,268 13,616  12,382 13,736 12,322 

 
Capital cost, ρ (1000 $ 
per year per mi) 

2,789 2,278 2,426 2,356  2,224 2,147 2,256 

 B/C: incr. invest. in VK 49.2 37.0 23.4 30.8  37.8 25.0 9.4 

 B/C: incr. invest. in Sf 18.3 9.6 12.0 11.7  10.9 19.6 9.2 

           

Arterials:         

 
Free-flow speed, Sf 

(mi/h) 
43.7 39.1 39.2 36.0  38.0 34.9 43.3 

 Capacity, VK (veh/h) 3,216 3,337 4,284 1,589  3,123 2,751 3,393 

 
Capital cost, ρ (1000 $ 
per year per mi) 

879 732 810 522  682 563 877 

 B/C: incr. invest. in VK 8.6 5.9 8.4 11.4  5.6 3.9 7.1 

 B/C: incr. invest. in Sf 5.4 7.2 11.4 3.8  7.0 6.2 5.7 
 
Note: B/C is the benefit cost ratio from incremental investment in capacity (VK) and free-flow speed (Sf) calculated 
using equations (15a) and (15b), respectively. 
 

 Finally, we present an example of a situation where one can trade off an increase in 

capacity for a decrease in free-flow speed by choosing among two road types. Here we depart 

from our incremental analysis using continuous functions, and instead perform straightforward 

cost-benefit calculations. Each calculation considers replacing plans for a standard six-lane 

freeway by instead building two undivided four-lane highways with below-standard lane widths. 

The two highways combined are slightly more expensive to build and provide 12 percent more 

capacity, but at a cost of 26 percent lower free-flow speed. For this example, we assume the 

freeway would encounter peak travel time of just under 30 minutes for a 10-mile trip, which is 
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associated with a peak volume-capacity ratio of 1.15. Having the same number of vehicles 

distributed evenly across the two highways would give each of these roads a peak volume-

capacity ratio of 1.02.  

 Results are shown in Table 7. Using the same peaking assumption as before, that the ratio 

of peak to off-peak volume is 1.25, building the two highways instead of the freeway saves more 

than 10 minutes per peak trip, but adds nearly 4 minutes per off-peak trip. Thus, the six-lane 

freeway is preferred since both its capital cost and total user time cost are lower. However, if we 

assume instead that Vp/Vo=1.5, i.e., we have the same peak volume as before but there are now 

fewer vehicles during off-peak hours, then off-peak travel time on the highways increases by just 

3.5 minutes relative to that on the freeway and total user time actually decreases. As it happens, 

the value of this time savings is worth more than the extra capital cost, yielding a benefit-cost 

ratio of 2.64.  

  

Table 7. Example of tradeoff between free-flow speed and capacity 

  Vp/Vo = 1.25  Vp/Vo = 1.50 

  

6-lane 
freeway 
(12 ft) 

Two 4-lane 
undiv hwys 

(11 ft) 
 

6-lane 
freeway 
(12 ft) 

Two 4-lane 
undiv hwys 

(11 ft) 

Free-flow speed, Sf (mi/h) 67.0 49.9  67.0 49.9 

Capacity, VK (veh/h) 12,763 14,339  12,763 14,339 

Vp/VK 1.15 1.02  1.15 1.02 

Vo/VK 0.92 0.82  0.76 0.68 

Average peak travel time, Tp (min) 29.6 19.0  29.6 19.0 

Average off-peak travel time, To (min) 9.1 12.9  9.0 12.5 

Capital cost, ρ (million $ per mi) 2.41 2.78  2.41 2.78 

Total user time cost (million $ per mi) 28.66 29.10  26.29 25.30 

Total cost (million $ per mi) 31.07 31.88  28.69 28.08 

Incremental benefits,  B (million $ per mi)   -0.43   0.99 

Incremental capital cost, C (million $ per mi)  0.37   0.37 

B/C  -1.15   2.64 
 
Note: All benefits and costs are per year, and the incremental benefits/capital cost are calculated based on building 
two four-lane undivided highways instead of one six-lane freeway. 
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 Intuitively, because the two highways offer more total capacity at the expense of free-

flow speed, they are beneficial to peak travelers at the expense of off-peak travelers. In general, 

we would expect that this type of tradeoff would be more favorable to the higher-capacity option 

when Vp/Vo is high. 

 This example is motivated in part by Samuel (2006), who argues that most US cities have 

major roads that are too wide and too sparsely spaced. Samuel argues the point from a different 

perspective, involving the engineering inefficiencies of intersections between very wide roads. 

Our approach, which recognizes explicitly the tradeoff between the needs of peak and off-peak 

travelers, thus complements his. While our earlier analysis of investment balance does not 

strictly apply to this discrete example, it does give some clues. In this example, the “investment 

balance” for the freeway (not shown in the table) is -4.5 at the higher ratio of peak- to off-peak 

traffic; that is, at the margin, the freeway offers too high a free-flow speed relative to capacity. 

The highway, by contrast, is much closer to balance, with value -1.0. Thus, it is perhaps not 

surprising that the freeway investment turns out unfavorable in this case.24 

 

6. Conclusion 

 

 When free-flow speed is distinguished as an additional dimension of road investment, it 

becomes possible to analyze some important questions about road design within an optimization 

framework familiar to economists. Specifically, we can analyze criteria for investment not only 

in road capacity but in free-flow speed, which effectively means choosing among road types 

and/or specific design criteria such as lane widths. There is sufficient independence between 

these two dimensions that one can not only analyze each individually, but consider the optimal 

balance between them.  

 Empirically, we find that despite the discreteness of road types, it is feasible to 

approximate the range of possibilities by analytical functions describing capital cost and user 

time costs as functions of capacity and free-flow speed. Doing so will not answer a specific 

design question for a specific road, but it is useful for broad-brush analyses of road policy, such 

as occurs in discussions about what type of road network a city needs. Our empirical analysis 

                                                 
24 However, the investment balance, an incremental criterion, is not nearly as sensitive to Vp/Vo as is the benefit-cost 
criterion for this discrete investment example: at Vp/Vo=1.25, the balance is -3.7 for freeways and -0.8 for arterials. 
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provides suggestive evidence that in many large congested cities, standard expressway designs 

are unbalanced in the sense of providing more free-flow speed than is desirable relative to 

capacity; whereas the same is not true for urban streets and arterial highways. This observation in 

turn suggests giving greater attention to the possibilities of more low-footprint roads which offer 

considerable capacity even though speeds are only moderate even at low traffic levels. 

 There are numerous factors not considered here that would be beneficial to add to this 

type of analysis. We mention a few here. 

 First, as emphasized by Ng and Small (2012), these design features have implications for 

safety which are potentially important but not well understood empirically. Furthermore, these 

safety implications could change dramatically as technologies, social customs, and legal 

environments evolve. 

 Second, some design features that reduce free-flow speed, such as reduced lane or 

shoulder widths, would be easier to undertake if large trucks are excluded from the road. 

Therefore, if one wants to use our analysis to reexamine policy toward road design, it would be a 

good time to also reexamine policy toward separating trucks and cars onto different roads. 

 Third, a broad policy analysis is likely to affect networks of roads, not just individual 

roads, which raises the question of how intersections affect costs. Kraus (1981) finds that 

accounting for the cost of intersections substantially decreases the measured scale economies 

with respect to capacity, because intersection costs tend to rise more than proportionally to the 

capacities of the intersecting roads. Whether any similar conclusion would apply for the 

elasticity of road costs with respect to free-flow speed would be extremely interesting and 

potentially important to discover. 

 Fourth, applications to particular road investments need to distinguish a finer time pattern 

of demand, to reduce inaccuracies caused by applying nonlinear relationships to averages. Doing 

so could also necessitate accounting for demand shifts across times of day. Alternatively, one 

might consider continuous-time models, such as the “bottleneck model” of Vickrey (1969) and 

Arnott et al. (1991), which deal with both issues simultaneously. 

 Fifth, our analysis does not include induced demand, i.e., the tendency of a road 

improvement to attract new traffic. This might well affect investment balance as well as the 

absolute investment criteria. To analyze this, one would need to have a more microscopic picture 
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of induced demand than is common, relating it specifically to increases in average speed by time 

period. 

 Finally, the potential for road pricing to reduce congestion would substantially change the 

optimal balance analyzed here, probably in favor of less capacity and more free-flow speed. 

Thus, our model suggests another potentially important long-run implication of road pricing: 

changing the nature as well as the capacity of a desirable urban road network. 

 With these and other improvements, we believe our approach to modeling road 

investment offers the potential for expanding insights and increasingly sophisticated practical 

analysis, all of which could enhance the efficiency with which roads are provided. 
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Notation 
 

 t Index for time periods, t = 1,2,…,n  
 qt Duration of time period t 
 Vt Traffic volume at time t 
 VK Capacity 
 vt Volume-capacity ratio (Vt/VK) 
 Sf Free-flow speed (including control delay at zero traffic volume for urban streets) 
 St Average speed 
 Tt Average user time (entire trip) 
 ρ Annualized road capital cost (per mile) 
 r Interest rate 
  Lifetime of road in years 
 L Trip length 
 K(·) Road construction cost (per mile) 
 A(·) Right-of-way acquisition cost (per mile) 
 ct Average user cost per vehicle-mile at time t 
 Ut Total user cost per road-mile per hour at time t 
 C Total agency plus user cost (short run) per road-mile 

 C
~

 Total agency plus user cost (long run) per road-mile 
  Value of time  
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